Part Number Hot Search : 
19N10 1C101 AMB0225S MAX168 SSP7N60A 65012 2N540 SOP20
Product Description
Full Text Search
 

To Download ZXLD1360EV8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ZXLD1360EV8 ZXLD1360EV8 user guide issu e 1 1 of 7 12-11-07 ZXLD1360EV8 evaluation board user guide description the ZXLD1360EV8, figure 1, is a double sided evaluation board for the zxld1360 led driver with internal switch. the evaluation board is preset to drive a 660ma into a singl e led, or an external choice of leds. the number of externally connected leds depends on the forw ard voltage of the leds connected. the led fitted on this evaluation board is supplied by cree inc. for further information on the cree range of leds, please visit their website at: www.cree.com the operating voltage is nominally 30 vo lts, but can be reduced to 7 volts. t he 33uh inductor used in the circuit is based on this nominal supply, which should be connected across +vin and gnd pins. note: the evaluation board does not have reverse battery protection. the nominal current for the evaluation board is set at 660ma with a 0.15 sense resistor, r1. alternative leds can be connected using the terminals marked led a and led k but the onboard led should be disconnected first by removing j3. terminal adj provides a connection point for dc or pwm dimming and shutdown. the evaluation board includes a thermal protection circuit to ensure the led is not over-driven under normal use. this circuit can be disabled by removing j7 warning: at 30v nominal operation with 660m a output, the led will be hot and very bright figure 1: ZXLD1360EV8 evaluation board
ZXLD1360EV8 ZXLD1360EV8 user guide issu e 1 2 of 7 12-11-07 zxld1360 device description the zxld1360 is a continuous mode inductive driver in a tsot23-5 package, for driving one or more series- connected leds efficiently from a voltage source higher than the led voltage. the device includes the output switch and a current sense circuit, which requires an exte rnal sense resistor to set the nominal current up to 1000ma. zxld1360 device features ? drives one or more series-connected leds ? leds up to 1000ma. ? internal 30v switch. ? wide input voltage: 7v to 30v. ? inherent open circuit led protection. ? brightness control using dc or pwm. ? internal pwm filter. device applications ? led flashlights. ? high power led driving. ? low-voltage halogen replacement leds. ? automotive lighting. ? illuminated signs. zxld1360 device packages, pin and definitions tsot23-5 pack zxld1360 device pin definition name pin no description lx 1 drain of ndmos switch. gnd 2 ground (0v). adj 3 internal voltage ref. pin (1.25v) : ? leave floating for normal operation. ? connect to gnd to tu rn off output current. ? drive with dc voltage (0.3v to 1.25v) or with pwm signal to adjust output current or.... ? connect a capacitor from this pi n to ground to set soft-start time. isense 4 connect a sense resistor, rs, from the adj pin to vin to sense the nominal output current. nominal i out = 0.1/ r1 vin 5 input voltage: 7v to 30v. decouple to ground with a 2u2f or higher ceramic capacitor. ordering information evalboard order number ZXLD1360EV8 please note: evaluation boards are subject to availability and qualified sales leads. device order number zxld1360e5t a
ZXLD1360EV8 ZXLD1360EV8 user guide issu e 1 3 of 7 12-11-07 ZXLD1360EV8 evaluation board reference design the ZXLD1360EV8 is configured to the reference design in figur e 2. the target application is a driver for torches or other high powered led applications. the operating voltage is a nominal 30v.the nominal current is set at 660ma with a 0.15 sense resistor, r1 and the circuit operates in continuous mode at 30 0khz approximately , with a 33uh inductor. an accurate way of determining the current is to measur e the voltage on the sense resistor. a 10k resistor and a 1uf capacitor can be used to form a low pass filter and the voltage across the capacitor represents a more stable dc reading of current . 100mv represents 1 amp when using a 0.1 ? sense resistor. the adj pin has a low pass filter within the 1360 chip to provide some decoupling and soft a start but the external capacitor c1 (100nf) is used to provide additional dec oupling to reduce any high frequency noise as well as providing an extra amount of soft start. both dc and pwm dimming can be achieved by driving the adj pin. for dc dimming, the adj pin may be driven between 0.3v and 1.25v. driving the adj pin below 0.2v will shutdown the output current. for pwm dimming, an external open-collector npn transistor or open-drain n-ch annel mosfet can be used to drive the adj pin. the pwm frequency can be low, around 100hz to 1khz, or high between 10khz to 50khz. for low frequency pwm c1 should be removed on the evaluation board to give a more accurate duty cycle . shorting r2 will connect the test pin adj to device pin adj if needed. the soft-start time will be nominally 0.5ms without capa citor c1. adding c1 will incr ease the soft start time by approximately 0.5ms/nf for other reference designs or further applications information, please refer to the zxld1360 datasheet. schematic diagram vin v sense zxld 1360 adj lx gnd thermally connected r1 0r15 jp2 c3 1uf l1 33uh d1 led1 q1 d2 c2 2.2uf r4 4k7 r3 1k r5 10 k ntc thermistor c 1 100 nf r2 1k 1 4 5 3 2 vin gnd led k jp1 led a adj figure 2: schematic for the evaluation board ZXLD1360EV8
ZXLD1360EV8 ZXLD1360EV8 user guide issu e 1 4 of 7 12-11-07 zxld1360 operation in normal operation, when voltage is applied at +vin, t he zxld1360 internal ndmos switch is turned on. current starts to flow through sense resistor r1, inductor l1, and th e led. the current ramps up linearly, and the ramp rate is determined by the input voltage +vin and the inductor l1. this rising current produces a voltage ramp across r1. the internal circuit of the zxld1360 senses the voltage across r1 and applies a proportional voltage to the input of the internal comparator. when this voltage reaches an internally set upper th reshold, the ndmos switch is turned off. the inductor current continues to flow through r1, l1, the led and the schottky diode d1, and back to the supply rail, but it decays, with the rate of decay determined by the forward voltage drop of the leds and the schottky diode. this decaying current produces a falling voltage at r1, wh ich is sensed by the zxld1360. a voltage proportional to the sense voltage across r1 is applied at the input of the internal comparator. when this voltage falls to the internally set lower threshold, the ndmos switch is turned on agai n. this switch-on-and-off cycle continues to provide the average led current set by the sense resistor r1. please refer to the datasheets for the threshold limits, zxld1360 internal circuits, electrical characteristics and parameters. to prevent overheating of the led, a 10k thermistor (r5) provides fee dback of the led temperature to the base of q1 which is held at 1.23 volts by d2 r3 and r4 at ambi ent 25c. the emitter is above the adj voltage of the 1360 and so if full current of 1 amp is programmed by the r sense resistor the led current reduces to around 500ma if no additional heat-sinking is provided to the eval board. the voltage on the ad j pin is 800mv approx when the led is hot. this function may be disabled by removing jumper link j7. ZXLD1360EV8 component list ref value package part number manufacturer notes r1 0.15r 0805 generic 5% r2, r3 1k 0805 generic 1% r4 4k7 0805 generic 1% r5 10k 1206 b57621c103j62 epcos ntc thermistor c1, c3 100nf, 50v 0805 nmc0805x7r104k50trpf grm21br71h104ka01l nic comps murata x7r c2 2u2f 50v 1206 grm31cr71h225ka88l murata x7r l1 33uh npis64d330mtrf nic comps 33uh, 1.1a rms d1 40v, 3a stps340u schottky diode d2 1.23v sot-23 zra124f01ta zetex voltage ref u1 zxld1360 tsot23-5 zxld1360e5ta zetex dc-dc converter led1 led xrewht-l1-wc-p2-01 cree q1 pnp sot- 23 bcw68h zetex note: the component part numbers are correct at the time of publication. zetex semiconductors plc reserves the right to substitute other parts where necessary, without further notification. the solder pad on the underside of the led is connected to a heat-dissipating copper plane on the top and bottom layers which is electrically isolated fr om all other connections on the board. warning: at 30v operation with 1000ma output, the heatsi nk temperature rises to 80c from ambient after 30 minutes of operation.
ZXLD1360EV8 ZXLD1360EV8 user guide issu e 1 5 of 7 12-11-07 figure 3: component layout ZXLD1360EV8 connection point definition name description vin positive supply voltage. gnd supply ground (0v). adj internal voltage ref. pin (1.25). this pin can be used to achieve dimming and soft-start, and for switching the output current off. ? leave floating for normal operation. ? see 'other features' section to achiev e dimming, and soft-start and for switching the output current off. led a led a connects to the anode of led1, and is the external led anode connection point. disconnect the jumper jp1 when driving an external load. led k led k connects to the cathode of led1, and is the external led cathode ZXLD1360EV8 basic operation at full voltage 1. connect vin and gnd . warning: the board does not feature reverse battery/supply protection. 2. set the psu to 30v 3. turn on the psu and the led will illuminate and the current should be approximately 660ma. warning: do not stare at the led directly.
ZXLD1360EV8 ZXLD1360EV8 user guide issu e 1 6 of 7 12-11-07 circuit features (remove power whilst changing components!) soft-start 1. fit a capacitor at c1 to alter t he rise-time of the adjust pin at start-up. the output impedance is 200k so 200,000 ? x c1 (farads) is the time constant to reach 66% of the maximum output current switching the output current off 1. short the adj pin to gnd and the led current will go to zero. releasing this pin will create a soft-start power-up sequence. changing the led current 1. remove r1. 2. calculate and fit a new sense resistor, r1, the value of which is based on the required led current without dimming. r1 can be calculated using following equation : r1 = 0.1v/i out where i out = the led current. r1 = the sense resistor value in ohms. 0.1v is the nominal sense voltage with ?adj? open circuit or set to 1.25v. using external leds or loads 1. switch off the power supply. 2. connect external leds across test pins ?led a? and ?led k?. ?led a? is the leds anode connection point and ?led k? is the leds cathode connection point. the number of external leds that can be connected depends on their operating power and forward voltage drop. for an external load other than leds, the positive terminal of the load should be connected to te st pin ?led a? and the negative terminal of the load should be connected to test pin ?led k?. the onboard led should be disconnected by removing j3. performance the system efficiency depends on the sense resistor, supply voltage, switching inductor and the number of leds with a 30v supply the switching frequency is typically 200khz and theefficiency level is >85% .
ZXLD1360EV8 ZXLD1360EV8 user guide issu e 1 7 of 7 12-11-07 definitions product change zetex semiconductors reserves the right to alter, without notice , specifications, design, price or conditions of supply of any product or service. customers are solely responsible for obtaining the latest relevant information before placing orders. applications disclaimer the circuits in this design/application note are offered as design ideas. it is the resp onsibility of the user to ensure that t he circuit is fit for the user?s application and meets with the user?s require ments. no representation or warranty is given and no liability whatsoever is assum ed by zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. zetex does not assume any legal responsibility or will not be hel d legally liable (whether in contract, tort (including neglige nce), breach of statutory duty, restriction or otherwise) for any dam ages, loss of profit, busines s, contract, opportunity or consequential loss in the u se of these circuit applications, under any circumstances. life support zetex products are specifically not authoriz ed for use as critical components in life support devices or systems without the ex press written approval of the chief executive officer of zetex semiconductors plc. as used herein: a. life support devices or systems are devices or systems which: 1. are intended to implant into the body or 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably ex pected to result in signif icant injury to the user. b. a critical component is any component in a life support devic e or system whose failure to perform can be reasonably expecte d to cause the failure of the life support device or to affect its safety or effectiveness. reproduction the product specifications contained in this publication are is sued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form par t of any order or contract or be regarded as a representation relating to the products or services concerned. terms and conditions all products are sold subjects to zetex? terms and conditions of sale, and this disclaimer (save in the event of a conflict bet ween the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement. for the latest information on technology, delivery terms and conditions and prices, please contact your nearest zetex sales off ice. quality of product zetex is an iso 9001 and ts16949 certified semiconductor manufacturer. to ensure quality of service and pr oducts we strongly advise the pur chase of parts directly from zetex semiconductors or one of our regionally authorized distributors. for a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork zetex semiconductors does not warrant or accept any liability what soever in respect of any parts purchased through unauthorized sales channels. esd (electrostatic discharge) semiconductor devices are susceptible to damage by esd. suitable precautions shoul d be taken when handling and transporting dev ices. the possible damage to devices depends on the circumstances of the hand ling and transporting, and the nature of the device. the ext ent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. devices su spected of being affected should be replaced. green compliance zetex semiconductors is committed to environm ental excellence in all aspects of its oper ations which includes meeting or exceed ing regulatory requirements with respect to the use of hazardous substances. numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. all zetex components are compliant with the rohs directive, and through this it is supporting its customers in their compliance with weee and elv directives. product status key: ?preview? future device intended for production at some point. samples may be available ?active? product status recommended for new designs ?last time buy (ltb)? device will be discontinued and last time buy period and delivery is in effect ?not recommended for new designs? device is still in production to support existing designs and production ?obsolete? production has been discontinued datasheet status key: ?draft version? this term denotes a very early dat asheet version and contains highly provisional information, which may change in any manner without notice. ?provisional version? this term denotes a pr e-release datasheet. it provi des a clear indication of anticipated performance. how ever, changes to the test conditions and specifications may occur, at any time and without notice. ?issue? this term denotes an issued datasheet containing fi nalized specifications. however, changes to specifications may occur, at any time and without notice. europe zetex gmbh kustermann-park balanstra?e 59 d-81541 mnchen germany telefon: (49) 89 45 49 49 0 fax: (49) 89 45 49 49 49 europe.sales@zetex.com americas zetex inc 700 veterans memorial highway hauppauge, ny 11788 usa telephone: (1) 631 360 2222 fax: (1) 631 360 8222 usa.sales@zetex.com asia pacific zetex (asia ltd) 3701-04 metroplaza tower 1 hing fong road, kwai fong hong kong telephone: (852) 26100 611 fax: (852) 24250 494 asia.sales@zetex.com corporate headquarters zetex semiconductors plc zetex technology park, chadderton oldham, ol9 9ll united kingdom telephone (44) 161 622 4444 fax: (44) 161 622 4446 hq@zetex.com ? 2006 published by zetex semiconductors plc.


▲Up To Search▲   

 
Price & Availability of ZXLD1360EV8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X